Visual Localization across Seasons Using Sequence Matching Based on Multi-Feature Combination †

نویسندگان

  • Yongliang Qiao
  • Cindy Cappelle
  • Yassine Ruichek
چکیده

Visual localization is widely used in autonomous navigation system and Advanced Driver Assistance Systems (ADAS). However, visual-based localization in seasonal changing situations is one of the most challenging topics in computer vision and the intelligent vehicle community. The difficulty of this task is related to the strong appearance changes that occur in scenes due to weather or season changes. In this paper, a place recognition based visual localization method is proposed, which realizes the localization by identifying previously visited places using the sequence matching method. It operates by matching query image sequences to an image database acquired previously (video acquired during traveling period). In this method, in order to improve matching accuracy, multi-feature is constructed by combining a global GIST descriptor and local binary feature CSLBP (Center-symmetric local binary patterns) to represent image sequence. Then, similarity measurement according to Chi-square distance is used for effective sequences matching. For experimental evaluation, the relationship between image sequence length and sequences matching performance is studied. To show its effectiveness, the proposed method is tested and evaluated in four seasons outdoor environments. The results have shown improved precision-recall performance against the state-of-the-art SeqSLAM algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Appearance-based Localization across Seasons in a Metric Map

In this paper we address the problem of appearance-based long-term outdoor localization across seasons. This is a difficult task due to the changing appearance of visual landmarks across seasons and time of day. Our approach operates based on the premise that combining visual landmarks observed at different times of the year into a single metric map will yield better localization results than a...

متن کامل

Robust Visual Robot Localization Across Seasons Using Network Flows

Image-based localization is an important problem in robotics and an integral part of visual mapping and navigation systems. An approach to robustly match images to previously recorded ones must be able to cope with seasonal changes especially when it is supposed to work reliably over long periods of time. In this paper, we present a novel approach to visual localization of mobile robots in outd...

متن کامل

Visual Place Recognition in Changing Environments with Time-Invariant Image Patch Descriptors

Feature descriptors for images are a mature area of study within computer vision, and as a result, researchers now have access to many attribute-invariant features (e.g. scale, shift, rotation). However, changes to environments caused by changes in time, ie. weather and season, still pose a serious problem for current image matching systems. As the use of detailed 3D maps and visual Simultaneou...

متن کامل

Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images

In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...

متن کامل

Fast and Robust Feature Matching for RGB-D Based Localization

In this paper we present a novel approach to global localization using an RGB-D camera in maps of visual features. For large maps, the performance of pure image matching techniques decays in terms of robustness and computational cost. Particularly, repeated occurrences of similar features due to repeating structure in the world (e.g., doorways, chairs, etc.) or missing associations between obse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017